|
- Kollarik M, Ru F, Brozmanova M. Vagal afferent nerves with the properties of nociceptors. Auton Neurosci 2010;153:12-20.
- Blackshaw LA, Brookes SJ, Grundy D, et al. Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 2007;19:1-19.
- Brierley SM, Linden DR. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol 2014;11:611-627.
- Grundy D, Brookes SJ. Neural control of gastrointestinal function. San Rafael: Morgan & Claypool, 2011.
- Bessou P, Perl ER. Amovement receptor of the small intestine. J Physiol 1966;182:404-426.
- Morrison JF. Splanchnic slowly adapting mechanoreceptors with punctate receptive fields in the mesentery and gastrointestinal tract of the cat. J Physiol 1973;233:349-361.
- Song X, Chen BN, Zagorodnyuk VP, et al. Identification of medium/high-threshold extrinsic mechanosensitive afferent nerves to the gastrointestinal tract. Gastroenterology 2009;137:274-284, 284 e271.
- Holzer P. Efferent-like roles of afferent neurons in the gut: blood flow regulation and tissue protection. Auton Neurosci 2006;125:70-75.
- Powley TL, Wang XY, Fox EA, et al. Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil 2008;20:69-79.
- Brookes SJ, Zagorodnyuk VP, Costa M. Mechanotransduction by vagal tension receptors in the upper gut. In: Undem B, Weinreich D, eds. Advances in Vagal Afferent Neurobiology. Boca Raton: CRC Press, 2005.
- Zagorodnyuk VP, Chen BN, Costa M, et al. Mechanotransduction by intraganglionic laminar endings of vagal tension receptors in the guinea-pig oesophagus. J Physiol 2003;553:575-587.
- Zagorodnyuk VP, Brookes SJ. Transduction sites of vagal mechanoreceptors in the guinea pig esophagus. J Neurosci 2000;20:6249-6255.
- Zagorodnyuk VP, Chen BN, Brookes SJ. Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol 2001;534:255-268.
- Lynn PA, Olsson C, Zagorodnyuk V, et al. Rectal intraganglionic laminar endings are transduction sites of extrinsic mechanoreceptors in the guinea pig rectum. Gastroenterology 2003;125:786-794.
- Olsson C, Costa M, Brookes SJ. Neurochemical characterization of extrinsic innervation of the guinea pig rectum. J Comp Neurol 2004;470:357-371.
- Brierley SM, Jones RC, 3rd, Gebhart GF, et al. Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 2004;127:166-178.
- Beyak MJ. Visceral afferents—determinants and modulation of excitability. Auton Neurosci 2010;153:69-78.
- Basbaum AI, Bautista DM, Scherrer G, et al. Cellular and molecular mechanisms of pain. Cell 2009;139:267-284.
- La JH, Schwartz ES, Gebhart GF. Differences in the expression of transient receptor potential channel V1, transient receptor potential channel A1 and mechanosensitive two pore-domain K+ channels between the lumbar splanchnic and pelvic nerve innervations of mouse urinary bladder and colon. Neuroscience 2011;186:179-187.
- Jones RC, 3rd, Xu L, Gebhart GF. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J Neurosci 2005;25:10981-10989.
- Rong W, Hillsley K, Davis JB, et al. Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. J Physiol 2004;560:867-881.
- Brierley SM, Hughes PA, Page AJ, et al. The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 2009;137:2084-2209.e2083.
- Brierley SM, Page AJ, Hughes PA, et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 2008;134:2059-2069.
- Cenac N, Altier C, Chapman K, et al. Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 2008;135:937-946, 946.e1-2.
- Cenac N, Altier C, Motta JP, et al. Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut 2010;59:481-488.
- Grant AD, Cottrell GS, Amadesi S, et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 2007;578:715-733.
- Sipe WE, Brierley SM, Martin CM, et al. Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 2008;294:G1288-G1298.
- Page AJ, Brierley SM, Martin CM, et al. Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 2005;54:1408-1415.
- Glatzle J, Sternini C, Robin C, et al. Expression of 5-HT3 receptors in the rat gastrointestinal tract. Gastroenterology 2002;123:217-226.
- Mawe GM, Hoffman JM. Serotonin signalling in the gut—functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 2013;10:473-486.
- Wheatcroft J, Wakelin D, Smith A, et al. Enterochromaffin cell hyperplasia and decreased serotonin transporter in a mouse model of postinfectious bowel dysfunction. Neurogastroenterol Motil 2005;17:863-870.
- Wynn G, Rong W, Xiang Z, et al. Purinergic mechanisms contribute to mechanosensory transduction in the rat colorectum. Gastroenterology 2003;125:1398-1409.
- Rong W, Keating C, Sun B, et al. Purinergic contribution to small intestinal afferent hypersensitivity in a murine model of postinfectious bowel disease. Neurogastroenterol Motil 2009;21:665-671, e32.
- Berthoud HR. Paying the price for eating ice cream: is excessive GLP-1 signaling in the brain the culprit? Endocrinology 2008;149:4765-4767.
- Young RL, Sutherland K, Pezos N, et al. Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes. Gut 2009;58:337-346.
- Richards W, Hillsley K, Eastwood C, et al. Sensitivity of vagal mucosal afferents to cholecystokinin and its role in afferent signal transduction in the rat. J Physiol 1996;497 (Pt 2):473-481.
- Whited KL, Tso P, Raybould HE. Involvement of apolipoprotein A-IV and cholecystokinin1 receptors in exogenous peptide YY3 36-induced stimulation of intestinal feedback. Endocrinology 2007;148:4695-4703.
- Liou AP, Lu X, Sei Y, et al. The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 2011;140:903-912.
- Tanaka T, Katsuma S, Adachi T, et al. Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch Pharmacol 2008;377:523-527.
- Ratcliffe EM, Farrar NR, Fox EA. Development of the vagal innervation of the gut: steering the wandering nerve. Neurogastroenterol Motil 2011;23:898-911.
- Liu Y, Ma Q. Generation of somatic sensory neuron diversity and implications on sensory coding. Curr Opin Neurobiol 2011;21:52-60.
- Malin S, Molliver D, Christianson JA, et al. TRPV1 and TRPA1 function and modulation are target tissue dependent. J Neurosci 2011;31:10516-10528.
- Fang X, Djouhri L, McMullan S, et al. trkA is expressed in nociceptive neurons and influences electrophysiological properties via Nav1.8 expression in rapidly conducting nociceptors. J Neurosci 2005;25:4868-4878.
- Stewart T, Beyak MJ, Vanner S. Ileitis modulates potassium and sodium currents in guinea pig dorsal root ganglia sensory neurons. J Physiol 2003;552:797-807.
- Vergnolle N. Postinflammatory visceral sensitivity and pain mechanisms. Neurogastroenterol Motil 2008;20 Suppl 1:73-80.
- Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain 2011;152:S2-S15.
- Chandler MJ, Zhang J, Foreman RD. Vagal, sympathetic and somatic sensory inputs to upper cervical (C1-C3) spinothalamic tract neurons in monkeys. J Neurophysiol 1996;76:2555-2567.
- Mayer EA, Naliboff BD, Craig AD. Neuroimaging of the brain-gut axis: from basic understanding to treatment of functional GI disorders. Gastroenterology 2006;131:1925-1942.
- Brumovsky PR, Gebhart GF. Visceral organ cross-sensitization—an integrated perspective. Auton Neurosci 2010;153:106-115.
- Willis WD, Al-Chaer ED, Quast MJ, et al. A visceral pain pathway in the dorsal column of the spinal cord. Proc Natl Acad Sci U S A 1999;96:7675-7679.
- Millan MJ. Descending control of pain. Prog Neurobiol 2002;66:355-474.
- Suzuki R, Rygh LJ, Dickenson AH. Bad news from the brain: descending 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci 2004;25:613-617.
- Kozlowski CM, Green A, Grundy D, et al. The 5-HT(3) receptor antagonist alosetron inhibits the colorectal distention induced depressor response and spinal c-fos expression in the anaesthetised rat. Gut 2000;46:474-480.
- Mayer EA, Aziz Q, Coen S, et al. Brain imaging approaches to the study of functional GI disorders: a Rome working team report. Neurogastroenterol Motil 2009;21:579-596.
- Fornasari D. Pain mechanisms in patients with chronic pain. Clin Drug Investig 2012;32(Suppl 1):45-52.
- Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 2009;10:895-926.
- Braz J, Solorzano C, Wang X, et al. Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 2014;82:522-536.
- Saab CY. Pain-related changes in the brain: diagnostic and therapeutic potentials. Trends Neurosci 2012;35:629-637.
- Staud R. Abnormal endogenous pain modulation is a shared characteristic of many chronic pain conditions. Expert Rev Neurother 2012;12:577-585.
- Heinricher MM, Tavares I, Leith JL, et al. Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev 2009;60:214-225.
- Myers B, Greenwood-Van Meerveld B. Role of anxiety in the pathophysiology of irritable bowel syndrome: importance of the amygdala. Front Neurosci 2009;3:47.
- Johnson AC, Myers B, Lazovic J, et al. Brain activation in response to visceral stimulation in rats with amygdala implants of corticosterone: an FMRI study. PLoS One 2010;5:e8573.
- Keszthelyi D, Troost FJ, Masclee AA. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Methods to assess visceral hypersensitivity in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2012;303:G141-G154.
- Wood JD. Enteric nervous system (the brain-in-the-gut). San Rafael: Morgan & Claypool, 2011.
- Bornstein JC, Gwynne RM, Sjovall H. Enteric neural regulation of mucosal secretion. San Diego: Elsevier Academic Press, 2012.
- Wood JD. Electrical activity of the intestine of mice with hereditary megacolon and absence of enteric ganglion cells. Am J Dig Dis 1973;18:477-488.
- Wood JD. Integrative functions of the enteric nervous system. San Diego: Elsevier, 2012.
- Brann L, Wood JD. Motility of the large intestine of piebald-lethal mice. Am J Dig Dis 1976;21:633-640.
- Weisbrodt NW, Christensen J. Electrical activity of the cat duodenum in fasting and vomiting. Gastroenterology 1972;63:1004-1010.
- Marder E, Bucher D. Central pattern generators and the control of rhythmic movements. Curr Biol 2001;11:R986-R996.
- Wood JD. Enteric nervous system: reflexes, pattern generators and motility. Curr Opin Gastroenterol 2008;24:149-158.
- Frieling T, Palmer JM, Cooke HJ, et al. Neuroimmune communication in the submucous plexus of guinea pig colon after infection with Trichinella spiralis. Gastroenterology 1994;107:1602-1609.
- Wang YZ, Cooke HJ. H2 receptors mediate cyclical chloride secretion in guinea pig distal colon. Am J Physiol 1990;258:G887-G893.
- Weems WA, Seidel ER, Johnson LR. Induction in vitro of a specific pattern of jejunal propulsive behavior by cholecystokinin. Am J Physiol 1985;248:G470-G478.
- Bullock TH, Horridge GA. Structure and function in the nervous systems of invertebrates. San Francisco: W. H. Freeman, 1965.
- Harris-Warrick RM, Johnson BR, Peck JH, et al. Distributed effects of dopamine modulation in the crustacean pyloric network. Ann N Y Acad Sci 1998;860:155-167.
- Katz PS, Harris-Warrick RM. Actions of identified neuromodulatory neurons in a simple motor system. Trends Neurosci 1990;13:367-373.
- Sarna SK. Giant migrating contractions and their myoelectric correlates in the small intestine. Am J Physiol 1987;253:G697-G705.
- Wood JD. Effects of bacteria on the enteric nervous system: implications for the irritable bowel syndrome. J Clin Gastroenterol 2007;41 Suppl 1:S7-S19.
- Grundy D, Al-Chaer ED, Aziz Q, et al. Fundamentals of neurogastroenterology: basic science. Gastroenterology 2006;130:1391-1411.
- Sanders KM, Koh SD, Ro S, et al. Regulation of gastrointestinal motility—insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 2012;9:633-645.
- Sanders KM, Ward SM, Koh SD. Interstitial cells: regulators of smooth muscle function. Physiol Rev 2014;94:859-907.
- Farrugia G. Interstitial cells of Cajal in health and disease. Neurogastroenterol Motil 2008;20 Suppl 1:54-63.
- Kindt S, Tack J. Mechanisms of serotonergic agents for treatment of gastrointestinal motility and functional bowel disorders. Neurogastroenterol Motil 2007;19(Suppl 2):32-39.
- Foley KF, Pantano C, Ciolino A, et al. IFN-gamma and TNF-alpha decrease serotonin transporter function and expression in Caco2 cells. Am J Physiol Gastrointest Liver Physiol 2007;292:G779-G784.
- Costedio MM, Coates MD, Brooks EM, et al. Mucosal serotonin signaling is altered in chronic constipation but not in opiate-induced constipation. Am J Gastroenterol 2010;105:1173-1180.
- Furness JB, Kunze WA, Bertrand PP, et al. Intrinsic primary afferent neurons of the intestine. Prog Neurobiol 1998;54:1-18.
- Linden DR, Sharkey KA, Ho W, et al. Cyclooxygenase-2 contributes to dysmotility and enhanced excitability of myenteric AH neurones in the inflamed guinea pig distal colon. J Physiol 2004;557:191-205.
- Manning BP, Sharkey KA, Mawe GM. Effects of PGE2 in guinea pig colonic myenteric ganglia. Am J Physiol Gastrointest Liver Physiol 2002;283:G1388-G1397.
- Khoshdel A, Verdu EF, Kunze W, et al. Bifidobacterium longum NCC3001 inhibits AH neuron excitability. Neurogastroenterol Motil 2013;25:e478-e484.
- Mao YK, Kasper DL, Wang B, et al. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun 2013;4:1465.
- Krauter EM, Linden DR, Sharkey KA, et al. Synaptic plasticity in myenteric neurons of the guinea-pig distal colon: presynaptic mechanisms of inflammation-induced synaptic facilitation. J Physiol 2007;581:787-800.
- Linden DR, Sharkey KA, Mawe GM. Enhanced excitability of myenteric AH neurones in the inflamed guinea-pig distal colon. J Physiol 2003;547:589-601.
- Lomax AE, Fernandez E, Sharkey KA. Plasticity of the enteric nervous system during intestinal inflammation. Neurogastroenterol Motil 2005;17:4-15.
- Strong DS, Cornbrooks CF, Roberts JA, et al. Purinergic neuromuscular transmission is selectively attenuated in ulcerated regions of inflamed guinea pig distal colon. J Physiol 2010;588:847-859.
- Roberts JA, Durnin L, Sharkey KA, et al. Oxidative stress disrupts purinergic neuromuscular transmission in the inflamed colon. J Physiol 2013;591:3725-3737.
- Mawe GM. Colitis-induced neuroplasticity disrupts motility in the inflamed and post-inflamed colon. J Clin Invest 2015;125:949-955.
- Hoffman JM, McKnight ND, Sharkey KA, et al. The relationship between inflammation-induced neuronal excitability and disrupted motor activity in the guinea pig distal colon. Neurogastroenterol Motil 2011;23:673-e279.
- Krauter EM, Strong DS, Brooks EM, et al. Changes in colonic motility and the electrophysiological properties of myenteric neurons persist following recovery from trinitrobenzene sulfonic acid colitis in the guinea pig. Neurogastroenterol Motil 2007;19:990-1000.
- Lomax AE, O’Hara JR, Hyland NP, et al. Persistent alterations to enteric neural signaling in the guinea pig colon following the resolution of colitis. Am J Physiol Gastrointest Liver Physiol 2007;292:G482-G491.
- Chen Z, Suntres Z, Palmer J, et al. Cyclic AMP signaling contributes to neural plasticity and hyperexcitability in AH sensory neurons following intestinal Trichinella spiralis-induced inflammation. Int J Parasitol 2007;37:743-761.
- Dustin ML. Signaling at neuro/immune synapses. J Clin Invest 2012;122:1149-1155.
- Qiu Y, Yang Y, Yang H. The unique surface molecules on intestinal intraepithelial lymphocytes: from tethering to recognizing. Dig Dis Sci 2014;59:520-529.
- Abadie V, Discepolo V, Jabri B. Intraepithelial lymphocytes in celiac disease immunopathology. Semin Immunopathol 2012;34:551-566.
- Qiu Y, Yang H. Effects of intraepithelial lymphocyte-derived cytokines on intestinal mucosal barrier function. J Interferon Cytokine Res 2013;33:551-562.
- Fuchs A, Colonna M. Innate lymphoid cells in homeostasis, infection, chronic inflammation and tumors of the gastrointestinal tract. Curr Opin Gastroenterol 2013;29:581-587.
- Guo L, Junttila IS, Paul WE. Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol 2012;33:598-606.
- Philip NH, Artis D. New friendships and old feuds: relationships between innate lymphoid cells and microbial communities. Immunol Cell Biol 2013;91:225-231.
- Pacheco R, Contreras F, Prado CE. Cells, molecules and mechanisms involved in the neuro-immune interaction. INTECH Open Access Publisher, 2012.
- Nijhuis LE, Olivier BJ, de Jonge WJ. Neurogenic regulation of dendritic cells in the intestine. Biochem Pharmacol 2010;80:2002-2008.
- Pacheco R, Riquelme E, Kalergis AM. Emerging evidence for the role of neurotransmitters in the modulation of T cell responses to cognate ligands. Cent Nerv Syst Agents Med Chem 2010;10:65-83.
- Pacheco R, Prado CE, Barrientos MJ, et al. Role of dopamine in the physiology of T-cells and dendritic cells. J Neuroimmunol 2009;216:8-19.
- Profita M, Riccobono L, Montalbano AM, et al. In vitro anticholinergic drugs affect CD8+ peripheral blood T-cells apoptosis in COPD. Immunobiology 2012;217:345-353.
- Schemann M, Camilleri M. Functions and imaging of mast cell and neural axis of the gut. Gastroenterology 2013;144:698-704, e694.
- Buhner S, Schemann M. Mast cell-nerve axis with a focus on the human gut. Biochim Biophys Acta 2012;1822:85-92.
- Hazeldine J, Harris P, Chapple IL, et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell 2014;13:690-698.
- Jacob SS, Shastry P, Sudhakaran PR. Monocyte-macrophage differentiation in vitro: modulation by extracellular matrix protein substratum. Mol Cell Biochem 2002;233:9-17.
- Smyth CM, Akasheh N, Woods S, et al. Activated eosinophils in association with enteric nerves in inflammatory bowel disease. PLoS One 2013;8:e64216.
- Bauer AJ, Boeckxstaens GE. Mechanisms of postoperative ileus. Neurogastroenterol Motil 2004;16(Suppl 2):54-60.
- Zhao A, Urban JF, Jr., Anthony RM, et al. Th2 cytokine-induced alterations in intestinal smooth muscle function depend on alternatively activated macrophages. Gastroenterology 2008;135:217-225, e211.
- de Jonge WJ. The gut’s little brain in control of intestinal immunity. ISRN Gastroenterol 2013:630159.
- McLean LP, Smith A, Cheung L, et al. Type 3 muscarinic receptors contribute to clearance of Citrobacter rodentium. Inflamm Bowel Dis 2015;21:1860-1871.
- Grailer JJ, Haggadone MD, Sarma JV, et al. Induction of M2 regulatory macrophages through the beta2-adrenergic receptor with protection during endotoxemia and acute lung injury. J Innate Immun 2014;6:607-618.
- Zhao A, Morimoto M, Dawson H, et al. Immune regulation of protease-activated receptor-1 expression in murine small intestine during Nippostrongylus brasiliensis infection. J Immunol 2005;175:2563-2569.
- Zhao A, Urban JF, Jr., Morimoto M, et al. Contribution of 5-HT2A receptor in nematode infection-induced murine intestinal smooth muscle hypercontractility. Gastroenterology 2006;131:568-578.
- Bosmann M, Ward PA. The inflammatory response in sepsis. Trends Immunol 2013;34:129-136.
- Ghia JE, Blennerhassett P, Kumar-Ondiveeran H, et al. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 2006;131:1122-1130.
- The FO, Boeckxstaens GE, Snoek SA, et al. Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology 2007;133:1219-1228.
- Rosas-Ballina M, Olofsson PS, Ochani M, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 2011;334:98-101.
- Cailotto C, Gomez-Pinilla PJ, Costes LM, et al. Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS One 2014;9:e87785.
- Matteoli G, Gomez-Pinilla PJ, Nemethova A, et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 2014;63:938-948.
- Straub RH, Grum F, Strauch U, et al. Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 2008;57:911-921.
- Blair PJ, Rhee PL, Sanders KM, et al. The significance of interstitial cells in neurogastroenterology. J Neurogastroenterol Motil 2014;20:294-317.
- Wouters MM, Farrugia G, Schemann M. 5-HT receptors on interstitial cells of Cajal, smooth muscle and enteric nerves. Neurogastroenterol Motil 2007;19 Suppl 2:5-12.
- Poole DP, Amadesi S, Veldhuis NA, et al. Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J Biol Chem 2013;288:5790-5802.
- Margolis KG, Stevanovic K, Karamooz N, et al. Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology 2011;141:588-598, 598.e1-2.
- Sharkey KA, Savidge TC. Reprint of: Role of enteric neurotransmission in host defense and protection of the gastrointestinal tract. Auton Neurosci 2014;182:70-82.
- McCrea PD, Turck CW, Gumbiner B. A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 1991;254:1359-1361.
- Johansson ME, Phillipson M, Petersson J, et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 2008;105:15064-15069.
- Johansson ME, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc Natl Acad Sci U S A 2011;108:4659-4665.
- Barrett KE. New ways of thinking about (and teaching about) intestinal epithelial function. Adv Physiol Educ 2008;32:25-34.
- Zeuthen T. Water-transporting proteins. J Membr Biol 2010;234:57-73.
- Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov 2014;13:259-277.
- Niess JH, Brand S, Gu X, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 2005;307:254-258.
- Galipeau HJ, Wiepjes M, Motta JP, et al. Novel role of the serine protease inhibitor elafin in gluten-related disorders. Am J Gastroenterol 2014;109:748-756.
- Kelly CP, Green PH, Murray JA, et al. Larazotide acetate in patients with coeliac disease undergoing a gluten challenge: a randomised placebo-controlled study. Aliment Pharmacol Ther 2013;37:252-262.
- Mukherjee S, Vaishnava S, Hooper LV. Multi-layered regulation of intestinal antimicrobial defense. Cell Mol Life Sci 2008;65:3019-3027.
- Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 2008;8:411-420.
- Ausubel FM. Are innate immune signaling pathways in plants and animals conserved? Nat Immunol 2005;6:973-979.
- Falk PG, Hooper LV, Midtvedt T, et al. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 1998;62:1157-1170.
- Bry L, Falk P, Huttner K, et al. Paneth cell differentiation in the developing intestine of normal and transgenic mice. Proc Natl Acad Sci U S A 1994;91:10335-10339.
- Wrzosek L, Miquel S, Noordine M-L, et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 2013;11:61.
- Bergström A, Kristensen MB, Bahl MI, et al. Nature of bacterial colonization influences transcription of mucin genes in mice during the first week of life. BMC Res Notes 2012;5:402.
- Ukena SN, Singh A, Dringenberg U, et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2007;2:e1308.
- Natividad JM, Hayes CL, Motta J-P, et al. Differential induction of antimicrobial REGIII by the intestinal microbiota and Bifidobacterium breve NCC2950. Appl Environ Microbiol 2013;79:7745-7754.
- Ochoa-Cortes F, Ramos-Lomas T, Miranda-Morales M, et al. Bacterial cell products signal to mouse colonic nociceptive dorsal root ganglia neurons. Am J Physiol Gastrointest Liver Physiol 2010;299:G723-G732.
- Acosta C, Davies A. Bacterial lipopolysaccharide regulates nociceptin expression in sensory neurons. J Neurosci Res 2008;86:1077-1086.
- Anitha M, Vijay-Kumar M, Sitaraman SV, et al. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 2012;143:1006-1016, e1004.
- Barajon I, Serrao G, Arnaboldi F, et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 2009;57:1013-1023.
- Chiu IM, Heesters BA, Ghasemlou N, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 2013;501:52-57.
- Diogenes A, Ferraz CC, Akopian AN, et al. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J Dent Res 2011;90:759-764.
- Donovan J, Grundy D. Endocannabinoid modulation of jejunal afferent responses to LPS. Neurogastroenterol Motil 2012;24:956-e465.
- Liu CY, Mueller MH, Rogler G, et al. Differential afferent sensitivity to mucosal lipopolysaccharide from Salmonella typhimurium and Escherichia coli in the rat jejunum. Neurogastroenterol Motil 2009;21:1335-e1129.
- McVey Neufeld KA, Mao YK, Bienenstock J, et al. The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil 2013;25:183-e188.
- Perez-Burgos A, Wang B, Mao YK, et al. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am J Physiol Gastrointest Liver Physiol 2013;304:G211-G220.
- Riley TP, Neal-McKinney JM, Buelow DR, et al. Capsaicin-sensitive vagal afferent neurons contribute to the detection of pathogenic bacterial colonization in the gut. J Neuroimmunol 2013;257:36-45.
- Rumio C, Besusso D, Arnaboldi F, et al. Activation of smooth muscle and myenteric plexus cells of jejunum via Toll-like receptor 4. J Cell Physiol 2006;208:47-54.
- Verdu EF, Armstrong D, Murray JA. Between celiac disease and irritable bowel syndrome: the “no man’s land” of gluten sensitivity. Am J Gastroenterol 2009;104:1587-1594.
- Pinier M, Fuhrmann G, Verdu E, et al. Prevention measures and exploratory pharmacological treatments of celiac disease. Am J Gastroenterol 2010;105:2551-2561.
- Karaki S-i, Tazoe H, Kaji I, et al. M1241 contractile and secretory responses of luminal short-chain fatty acids and the expression of these receptors, GPR41 and GPR43, in the human small and large intestines. Gastroenterology 2008;134:A-368.
- Neunlist M, Dobreva G, Schemann M. Characteristics of mucosally projecting myenteric neurones in the guinea-pig proximal colon. J Physiol 1999;517 (Pt 2):533-546.
- Nohr MK, Pedersen MH, Gille A, et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology 2013;154:3552-3564.
- Tazoe H, Otomo Y, Karaki S, et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res 2009;30:149-156.
- Yajima T. Luminal propionate-induced secretory response in the rat distal colon in vitro. J Physiol 1988;403:559-575.
- Kaji I, Karaki S, Tanaka R, et al. Density distribution of free fatty acid receptor 2 (FFA2)-expressing and GLP-1-producing enteroendocrine L cells in human and rat lower intestine, and increased cell numbers after ingestion of fructo-oligosaccharide. J Mol Histol 2011;42:27-38.
- Suply E, de Vries P, Soret R, et al. Butyrate enemas enhance both cholinergic and nitrergic phenotype of myenteric neurons and neuromuscular transmission in newborn rat colon. Am J Physiol Gastrointest Liver Physiol 2012;302:G1373-G1380.
- Musch MW, Bookstein C, Xie Y, et al. SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. Am J Physiol Gastrointest Liver Physiol 2001;280:G687-G693.
- Pimentel M, Lin HC, Enayati P, et al. Methane, a gas produced by enteric bacteria, slows intestinal transit and augments small intestinal contractile activity. Am J Physiol Gastrointest Liver Physiol 2006;290:G1089-G1095.
- Patacchini R, Santicioli P, Giuliani S, et al. Hydrogen sulfide (H2S) stimulates capsaicin-sensitive primary afferent neurons in the rat urinary bladder. Br J Pharmacol 2004;142:31-34.
- Matsunami M, Tarui T, Mitani K, et al. Luminal hydrogen sulfide plays a pronociceptive role in mouse colon. Gut 2009;58:751-761.
- Xu GY, Winston JH, Shenoy M, et al. The endogenous hydrogen sulfide producing enzyme cystathionine-beta synthase contributes to visceral hypersensitivity in a rat model of irritable bowel syndrome. Mol Pain 2009;5:44.
- Andersson DA, Gentry C, Bevan S. TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide. PLoS One 2012;7:e46917.
- Feng X, Zhou YL, Meng X, et al. Hydrogen sulfide increases excitability through suppression of sustained potassium channel currents of rat trigeminal ganglion neurons. Mol Pain 2013;9:4.
- Li L, Xie R, Hu S, et al. Upregulation of cystathionine beta-synthetase expression by nuclear factor-kappa B activation contributes to visceral hypersensitivity in adult rats with neonatal maternal deprivation. Mol Pain 2012;8:89.
- Lu W, Li J, Gong L, et al. H2S modulates duodenal motility in male rats via activating TRPV1 and KATP channels. Br J Pharmacol 2013;171:1534-1550.
- Miyamoto R, Otsuguro K, Ito S. Time- and concentration-dependent activation of TRPA1 by hydrogen sulfide in rat DRG neurons. Neurosci Lett 2011;499:137-142.
- Okubo K, Matsumura M, Kawaishi Y, et al. Hydrogen sulfide-induced mechanical hyperalgesia and allodynia require activation of both Cav3.2 and TRPA1 channels in mice. Br J Pharmacol 2012;166:1738-1743.
- Qi F, Zhou Y, Xiao Y, et al. Promoter demethylation of cystathionine-beta-synthetase gene contributes to inflammatory pain in rats. Pain 2013;154:34-45.
- Qu R, Tao J, Wang Y, et al. Neonatal colonic inflammation sensitizes voltage-gated Na(+) channels via upregulation of cystathionine beta-synthetase expression in rat primary sensory neurons. Am J Physiol Gastrointest Liver Physiol 2013;304:G763-G772.
- Tsubota-Matsunami M, Noguchi Y, Okawa Y, et al. Colonic hydrogen sulfide-induced visceral pain and referred hyperalgesia involve activation of both Ca(v)3.2 and TRPA1 channels in mice. J Pharmacol Sci 2012;119:293-296.
- Wang Y, Qu R, Hu S, et al. Upregulation of cystathionine beta-synthetase expression contributes to visceral hyperalgesia induced by heterotypic intermittent stress in rats. PLoS One 2012;7:e53165.
- Gallego D, Clave P, Donovan J, et al. The gaseous mediator, hydrogen sulphide, inhibits in vitro motor patterns in the human, rat and mouse colon and jejunum. Neurogastroenterol Motil 2008;20:1306-1316.
- Sha L, Linden DR, Farrugia G, et al. Hydrogen sulfide selectively potentiates central preganglionic fast nicotinic synaptic input in mouse superior mesenteric ganglion. J Neurosci 2013;33:12638-12646.
- Schicho R, Krueger D, Zeller F, et al. Hydrogen sulfide is a novel prosecretory neuromodulator in the guinea-pig and human colon. Gastroenterology 2006;131:1542-1552.
- Krueger D, Foerster M, Mueller K, et al. Signaling mechanisms involved in the intestinal pro-secretory actions of hydrogen sulfide. Neurogastroenterol Motil 2010;22:1224-1231, e319-e320.
- Alemi F, Kwon E, Poole DP, et al. The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest 2013;123:1513-1530.
- Poole DP, Godfrey C, Cattaruzza F, et al. Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol Motil 2010;22:814-825, e227-e228.
- Dopico AM, Walsh JV, Jr., Singer JJ. Natural bile acids and synthetic analogues modulate large conductance Ca2+-activated K+ (BKCa) channel activity in smooth muscle cells. J Gen Physiol 2002;119:251-273.
- Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem 2003;278:9435-9440.
- Lavoie B, Balemba OB, Godfrey C, et al. Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1 receptors and activation of KATP channels. J Physiol 2010;588:3295-3305.
- Rajagopal S, Kumar DP, Mahavadi S, et al. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway. Am J Physiol Gastrointest Liver Physiol 2013;304:G527-G535.
- Page AJ, Martin CM, Blackshaw LA. Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. J Neurophysiol 2002;87:2095-2103.
- Edwards CA, Brown S, Baxter AJ, et al. Effect of bile acid on anorectal function in man. Gut 1989;30:383-386.
- Kang YM, Bielefeldt K, Gebhart GF. Sensitization of mechanosensitive gastric vagal afferent fibers in the rat by thermal and chemical stimuli and gastric ulcers. J Neurophysiol 2004;91:1981-1989.
- Lynn PA, Blackshaw LA. In vitro recordings of afferent fibres with receptive fields in the serosa, muscle and mucosa of rat colon. J Physiol 1999;518 (Pt 1):271-282.
- Su X, Gebhart GF. Mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat are polymodal in character. J Neurophysiol 1998;80:2632-2644.
- Traub RJ, Tang B, Ji Y, et al. A rat model of chronic postinflammatory visceral pain induced by deoxycholic acid. Gastroenterology 2008;135:2075-2083.
- Andrew LK, Blackshaw LA. Colonic mechanoreceptor inputs to rat lumbo-sacral dorsal horn neurones: distribution, thresholds and chemosensory modulation. Neurogastroenterol Motil 2001;13:333-337.
- Alemi F, Poole DP, Chiu J, et al. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013;144:145-154.
- Karlstrom L. Evidence of involvement of the enteric nervous system in the effects of sodium deoxycholate on small-intestinal transepithelial fluid transport and motility. Scand J Gastroenterol 1986;21:321-330.
- Fihn BM, Sjoqvist A, Jodal M. Involvement of enteric nerves in permeability changes due to deoxycholic acid in rat jejunum in vivo. Acta Physiol Scand 2003;178:241-250.
- Sun Y, Fihn BM, Sjovall H, et al. Enteric neurones modulate the colonic permeability response to luminal bile acids in rat colon in vivo. Gut 2004;53:362-367.
- Barbara G, Cremon C, Carini G, et al. The immune system in irritable bowel syndrome. J Neurogastroenterol Motil 2011;17:349-359.
- Dinan TG, Quigley EM, Ahmed SM, et al. Hypothalamic-pituitary-gut axis dysregulation in irritable bowel syndrome: plasma cytokines as a potential biomarker? Gastroenterology 2006;130:304-311.
- Lazovic J, Wrzos HF, Yang QX, et al. Regional activation in the rat brain during visceral stimulation detected by c-fos expression and fMRI. Neurogastroenterol Motil 2005;17:548-556.
- Myers B, Greenwood-Van Meerveld B. Corticosteroid receptor-mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. Am J Physiol Gastrointest Liver Physiol 2007;292:G1622-G1629.
- Myers B, Greenwood-Van Meerveld B. Divergent effects of amygdala glucocorticoid and mineralocorticoid receptors in the regulation of visceral and somatic pain. Am J Physiol Gastrointest Liver Physiol 2010;298:G295-G303.
- Myers B, Greenwood-Van Meerveld B. Elevated corticosterone in the amygdala leads to persistent increases in anxiety-like behavior and pain sensitivity. Behav Brain Res 2010;214:465-469.
- Chaloner A, Greenwood-Van Meerveld B. Sexually dimorphic effects of unpredictable early life adversity on visceral pain behavior in a rodent model. J Pain 2013;14:270-280.
- Tyler K, Moriceau S, Sullivan RM, et al. Long-term colonic hypersensitivity in adult rats induced by neonatal unpredictable vs. predictable shock. Neurogastroenterol Motil 2007;19:761-768.
- Tarullo AR, Gunnar MR. Child maltreatment and the developing HPA axis. Horm Behav 2006;50:632-639.
- Becker K, Abraham A, Kindler J, et al. Exposure to neonatal separation stress alters exploratory behavior and corticotropin releasing factor expression in neurons in the amygdala and hippocampus. Dev Neurobiol 2007;67:617-629.
- Coutinho SV, Plotsky PM, Sablad M, et al. Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol 2002;282:G307-G316.
- o’malley D, Julio-Pieper M, Gibney SM, et al. Differential stress-induced alterations of colonic corticotropin-releasing factor receptors in the Wistar Kyoto rat. Neurogastroenterol Motil 2010;22:301-311.
- Hong S, Fan J, Kemmerer ES, et al. Reciprocal changes in vanilloid (TRPV1) and endocannabinoid (CB1) receptors contribute to visceral hyperalgesia in the water avoidance stressed rat. Gut 2009;58:202-210.
- Hong S, Zheng G, Wu X, et al. Corticosterone mediates reciprocal changes in CB 1 and TRPV1 receptors in primary sensory neurons in the chronically stressed rat. Gastroenterology 2011;140:627-637, e4.
- Winston JH, Xu GY, Sarna SK. Adrenergic stimulation mediates visceral hypersensitivity to colorectal distension following heterotypic chronic stress. Gastroenterology 2010;138:294-304, e3.
- Weaver IC, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004;7:847-854.
- Tran L, Chaloner A, Sawalha AH, et al. Importance of epigenetic mechanisms in visceral pain induced by chronic water avoidance stress. Psychoneuroendocrinology 2013;38:898-906.
- Tran L, Schulkin J, Ligon CO, et al. Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol Psychiatry 2015;20:1219-1231.
- Chen J, Evans AN, Liu Y, et al. Maternal deprivation in rats is associated with corticotrophin-releasing hormone (CRH) promoter hypomethylation and enhances CRH transcriptional responses to stress in adulthood. J Neuroendocrinol 2012;24:1055-1064.
- Castro J, Harrington AM, Hughes PA, et al. Linaclotide inhibits colonic nociceptors and relieves abdominal pain via guanylate cyclase-C and extracellular cyclic guanosine 3’,5’-monophosphate. Gastroenterology 2013;145:1334-1346, e1-e11.
- Leffler DA, Kelly CP, Green PH, et al. Larazotide acetate for persistent symptoms of celiac disease despite a gluten-free diet: a randomized controlled trial. Gastroenterology 2015;148:1311-1319, e6.
- Nasser Y, Boeckxstaens G, Schemann M, et al. Using human intestinal biopsies to study the pathogenesis of irritable bowel syndrome. Neurogastroenterol Motil 2014;26:455–469.
- Hughes PA, Brierley SM, Martin CM, et al. Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses. Gut 2009;58:1333-1341.
- Qin HY, Wu JC, Tong XD, et al. Systematic review of animal models of post-infectious/post-inflammatory irritable bowel syndrome. J Gastroenterol 2011;46:164-174.
- Camilleri M, Bueno L, de Ponti F, et al. Pharmacological and pharmacokinetic aspects of functional gastrointestinal disorders. Gastroenterology 2006;130:1421-1434.
- Holschneider DP, Bradesi S, Mayer EA. The role of experimental models in developing new treatments for irritable bowel syndrome. Expert Rev Gastroenterol Hepatol 2011;5:43-57.
- Mayer EA, Bradesi S, Chang L, et al. Functional GI disorders: from animal models to drug development. Gut 2008;57:384-404.
- Camilleri M. Pharmacology of the new treatments for lower gastrointestinal motility disorders and irritable bowel syndrome. Clin Pharmacol Ther 2012;91:44-59.
- Mohammad S, Zhou Z, Gong Q, et al. Blockage of the HERG human cardiac K+ channel by the gastrointestinal prokinetic agent cisapride. Am J Physiol 1997;273:H2534-H2538.
- Rampe D, Roy ML, Dennis A, et al. A mechanism for the proarrhythmic effects of cisapride (Propulsid): high affinity blockade of the human cardiac potassium channel HERG. FEBS Lett 1997;417:28-32.
- Bulmer DC, Grundy D. Achieving translation in models of visceral pain. Curr Opin Pharmacol 2011;11:575-581.
- Bampton PA, Dinning PG. High resolution colonic manometry—what have we learnt?—A review of the literature 2012. Curr Gastroenterol Rep 2013;15:328.
- Wang Z, Ocampo MA, Pang RD, et al. Alterations in prefrontal-limbic functional activation and connectivity in chronic stress-induced visceral hyperalgesia. PLoS One 2013;8:e59138.
- Ibeakanma C, Miranda-Morales M, Richards M, et al. Citrobacter rodentium colitis evokes post-infectious hyperexcitability of mouse nociceptive colonic dorsal root ganglion neurons. J Physiol 2009;587:3505-3521.
- Gareau MG, Wine E, Rodrigues DM, et al. Bacterial infection causes stress-induced memory dysfunction in mice. Gut 2011;60:307-317.
- Ibeakanma C, Ochoa-Cortes F, Miranda-Morales M, et al. Brain-gut interactions increase peripheral nociceptive signaling in mice with postinfectious irritable bowel syndrome. Gastroenterology 2011;141:2098-2108, e2095.
- Simren M, Barbara G, Flint HJ, et al. Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 2013;62:159-176.
- Collins SM, Kassam Z, Bercik P. The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Curr Opin Microbiol 2013;16:240-245.
- De Palma G, Blennerhassett P, Lu J, et al. Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 2015;6:7735.
- Bercik P, Collins SM, Verdu EF. Microbes and the gut-brain axis. Neurogastroenterol Motil 2012;24:405-413.
- Crouzet L, Gaultier E, Del’Homme C, et al. The hypersensitivity to colonic distension of IBS patients can be transferred to rats through their fecal microbiota. Neurogastroenterol Motil 2013;25:e272-e282.
- Bercik PL, Lu J, Verdu EF, et al. Transfer of IBS phenotype to GERM-free mice through microbiota transplantation. Neurogastroenterol Motil 2012;24:Abstract 33.
- Cirillo C, Tack J, Vanden Berghe P. Nerve activity recordings in routine human intestinal biopsies. Gut 2013;62:227-235.
- Linley J, Loganathan A, Kopanati S, et al. Evidence that two distinct crypt cell types secrete chloride and potassium in human colon. Gut 2013;63:472-479.
- Hughes PA, Harrington AM, Castro J, et al. Sensory neuro-immune interactions differ between irritable bowel syndrome subtypes. Gut 2013;62:1456-1465.
- Gecse K, Roka R, Ferrier L, et al. Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity. Gut 2008;57:591-599.
- Peiris M, Bulmer DC, Baker MD, et al. Human visceral afferent recordings: preliminary report. Gut 2011;60:204-208.
- Jiang W, Adam IJ, Kitsanta P, et al. ‘First-in-man’: characterising the mechanosensitivity of human colonic afferents. Gut 2011;60:281-282.
- Zhang Y, Beyak MJ, Lomax A, et al. Potentiation of descending inhibition to colonic circular smooth muscle of mice and humans by chronic stress and stress hormones: a mechanism for stress-induced diarrhea? Gastroenterology 2013;5:S-37.
- Vignali S, Peter N, Ceyhan G, et al. Recordings from human myenteric neurons using voltage-sensitive dyes. J Neurosci Methods 2010;192:240-248.
You must be logged in with a subscription to access this page. Click here to login.